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Abstract—Exact probabilistic inference is computationally 

intractable in general probabilistic graph-based models, such as 

Markov Random Fields and Conditional Random Fields (CRFs). 

We investigate spanning tree approximations for the 

discriminative CRF model. We decompose the original 

computationally intractable grid-structured CRF model 

containing many cycles into a set of tractable sub-models 

using a set of spanning trees. The structure of spanning trees 

is generated uniformly at random among all spanning trees 

of the original graph. These trees are learned independently to 

address the classification problem and Maximum Posterior 

Marginal estimation is performed on each individual tree. 

Classification labels are produced via voting strategy over the 

marginals obtained on the sampled spanning trees. The learning 

is computationally efficient because the inference on trees is 

exact and efficient. Our objective is to investigate the 

capability of approximation of the original loopy graph 

model with loopy belief propagation inference via learning a 

pool of randomly sampled acyclic graphs. We focus on the 

impact of memorizing the structure of sampled trees. We 

compare two approaches to create an ensemble of spanning trees, 

whose parameters are optimized during learning: (1) memorizing 

the structure of the sampled spanning trees used during learning 

and, (2) not storing the structure of the sampled spanning trees 

after learning and regenerating trees anew. Experiments are 

done on two image datasets consisting of synthetic and real-world 

images. These datasets were designed for the tasks of binary 

image denoising and man-made structure recognition. 

Keywords—conditional random field; belief propagation; 

inference; spanning tree 

I. INTRODUCTION 

Complex event and object recognition requires analysis of 
massive quantities of data to detect and identify static or 
dynamic patterns. One challenge for automated object 
recognition, and machine learning in general, arises from the 
fact that in spite of growing quantities of data, object 
recognition often remains ill-posed, particularly for low signal-
to-noise ratios. The object recognition ambiguity can be 
addressed by exploiting the fact that events and objects rarely 
occur in isolation; they tend to co-occur and co-vary, and this 
correlation structure, known as context, provides important 
information for the disambiguation of the event (Fig.1). This 
problem of object disambiguation is extremely common in a 
broad spectrum of applications, such as computer vision, social 

network analysis, bioinformatics, text analytics, and the 
semantic web. For example, classification of Web documents 
can be improved by augmenting analysis of the Web page text 
with the page hyperlinks that define relations to other Web 
pages. From a broader perspective, recognition and 
disambiguation of interrelated objects can be posed as 
structured machine learning. The goal is learning structured 
hypothesis from data with internal structure in the form of one 
or more relations and global constraints in the problem input 
and output domains, a set of observables X and a set of output 
random variables 𝑦𝑖 ∈ 𝒀 , respectively. The variable 𝑦𝑖  is 
assumed to take a value from a finite label set 𝑆𝑖 =
{𝑠1, 𝑠2, … , 𝑠𝑚𝑖

} with cardinality m. For example, in a case of 

binary classification the variables have two states, 𝑦𝑖 =  {0,1} 
and may correspond to object classes such as images of man-
made objects and images of nature scenes. With structure 
present in the problem output domain, which consists of 
multiple interdependent labels 𝑦𝑖 ∈ 𝒀 that have to be assigned 
to objects, recognition of objects is done by jointly labeling all 
the output variables simultaneously. In such an approach each 
object or object component acts as context for others by 
mutually facilitating and constraining interpretation of each 
other. This collective classification exploits interdependence 
between the output variables and is in contrast to “standard” 
methods of machine learning, where input observed instances 
are mapped to labels independently of each other.  

Undirected probabilistic graphical models such as Markov 
Random Fields (MRFs) and Conditional Random Fields 
(CRFs) are being increasingly used to model problems having 
a structured domain and to enable probabilistic inferences such 
as answering queries about the variables of interest (e.g., 
labeling of output variables). A key task of probabilistic 
inference is to compute the probability distribution over the 
unobserved variables 𝑦𝑖 ∈ 𝒀 given the observed values of other 
random variables (the evidence) and accounting for prior 
beliefs.  

There is one overreaching problem for structured machine 
learning in undirected graphical models: developing 
computationally tractable learning and inference methods. 
Challenges are due to the computational intractability of exact 
inference over general graphs with many variables which is 
often the case in most real-world scenarios. Hence, there is a 
need  to  find  ways  to  reduce  the  cost  of  inference   both  at  
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Fig. 1. An illustration of context priming for recognition: (a) with only information from a small region, the object is not recognizable (left), by adding the 

object’s context, recognizing the car becomes possible (right); (b) what may appear as spiders (left), when viewed alone out of the surrounding  context, 
becomes the top burner grates for gas range, when viewed in the context of the whole scene (right).  

learning time and at run time. In this work, we focus on the 
problem of approximation of learning and inference in grid-
structured CRF-based probabilistic model via ensemble of 
randomly generated spanning trees. 

The CRFs are the discriminative models [1]. While MRF 
models the joint distribution 𝑃(𝑿, 𝒀), CRF directly models a 
conditional distribution 𝑃(𝒀|𝑿)  and avoids modeling the 
distribution over the variables in X, 𝑃(𝑿). The CRF-based 
approach allows one to relax the assumption of conditional 
independence of the observed data often used in generative 
approaches, such as MRF, and makes it possible to incorporate 
almost arbitrary feature vector representations of the observed 
data points thus facilitating complex context modeling. The 
CRF model with strictly positive probability distribution 
can be parameterized in the form of an exponential family. 
This model is factorized according to a graph G consisting 
of a set of nodes, V, corresponding to random variables 𝑦𝑖 , 
and a set of undirected edges, E. By the Hammersley-
Clifford theorem [2][3] the conditional distribution can be 
given in a factored form as: 

𝑃(𝒀|𝑿;  𝜽) =
1

Z(𝑿; 𝜽)
exp(−𝑈(𝒀, 𝑿, 𝜽)) =

1

Z(𝑿; 𝜽)
∏ Φ𝑐(𝒀𝒄, 𝑿𝒄;  𝜽)𝐶

𝑐=1 , 

 

(1) 

where 𝜽  are model parameters; Z(𝑿;  𝜽)  is a normalization 
factor also known as the partition function and is, in general, 
intractable to compute; 𝑈(𝒀, 𝑿, 𝜽)  is the energy function, 
which is the sum of clique potentials over all possible maximal 
cliques, C, in the graph; Φ𝑐(𝒀𝒄, 𝑿𝒄;  𝜽)  are positive factors 
corresponding to maximal cliques in the graph, where a 
maximal clique of a graph is a fully connected subset of nodes 
that cannot be further extended. Factors are also referred as 
potential functions or potentials. The normalization factor is 
computed by summing over all possible assignments of Y in 
the joint label space of all nodes Ω = 𝑆1 × 𝑆2 × … × 𝑆|𝑉|: 

𝑍(𝑿;  𝜽) = ∑ ∏ Φ𝑐(𝒀𝑐
′ , 𝑿𝒄;  𝜽)𝐶

𝑐=1𝒀′∈Ω , (2) 

Thus, CRF may be viewed as an MRF globally 
conditioned on the observed data. In other words, CRF 
makes independence assumptions among Y, but not among 
X, that is when Y is conditioned on X, conditional 
distribution of 𝑦𝑖  given its neighbors, defined by the graph 
G, does not depend on other variables 𝑦𝑗  outside the 

neighborhood of 𝑦𝑖 .  

It is generally assumed that factors are represented using a 
log-linear model and parameterized by means of an inner 
product between the parameter vector 𝜽 and a feature function 
that takes into account information relevant to the application 
task. In this case the factor parameterization takes the form:  

Φ𝑐(𝒀𝒄, 𝑿𝒄;  𝜽) = exp{𝜽𝑐
𝑇 ∙ 𝑓𝑐(𝒀𝒄, 𝑿𝒄)}, (3) 

where 𝑓𝑐  is known as feature functions of factor c. In 
applications, e.g. computer vision, a pairwise CRF model 
is often used. This model takes into consideration only 
unary and pairwise cliques. The distribution is then 
defined as: 

𝑃(𝒀|𝑿;  𝜽) =
1

Z(𝑿; 𝜽)
∏ 𝜓𝑖(𝒀𝑖, 𝑿; 𝜽𝑖)𝑖∈𝑉 ∏ 𝜓𝑖𝑗(𝒀𝑖, 𝒀𝒋, 𝑿; 𝜽𝑖𝑗)(𝑖,𝑗)∈𝐸 , 

 

(4) 

where 𝜓𝑖  and 𝜓𝑖𝑗  are clique factors. In the context of the 

classification task, 𝜓𝑖  is the association potentials defined over 
the node that measures the support for class label 𝑦𝑖  of node i, 
and the pairwise potentials 𝜓𝑖𝑗  defined over graph edges are 

the interaction potentials that represent “compatibility” 
between the different label assignments to the nodes i and j. In 
computer vision tasks, for instance, the node 𝑦𝑖 can represent a 
random variable that is a label corresponding to an individual 
pixel patch and 𝑥𝑖  is a feature vector containing color 
characteristics of this pixel patch. Due to lack of restrictions on 
𝑥𝑖, it can include characteristics of neighboring patches as well. 
In the example above, the interaction potential might estimate 
similarity of neighboring pixel patches in terms of their color 
features as well as compatibility of their labels. 

Learning the CRF model corresponds to finding the model 
parameters, 𝜃∗ , that maximize the conditional log-likelihood 
objective, L, on the training data D: 

𝜃∗ = arg max𝜃 𝐿(𝐷, 𝜽) =

arg max𝜃 (
1

|𝐷|
∑ log 𝑃(𝒀|𝑿;  𝜽)(𝑿,𝒀)∈𝐷 − 𝜆 ∙ ‖𝜽‖2) , 

 

(5) 

where the regularization penalty term 𝜆 ∙ ‖𝜽‖2 (𝜆 = 1 2𝜎2⁄ ) 
is a Gaussian prior imposed on  the parameters to control 
for overfitting. Estimation of the gradient of the log-
likelihood objective requires computing marginals and is 
usually not tractable due to the presence of the partition 
function. Once the model is learned, inferring classification 
labels is done using either maximum a posteriori (MAP) or the 
maximum posterior marginals (MPM) criteria that,  similar  to  



  

 
Fig. 2. Illustration of two spanning trees corresponding to a 5×7 grid graph. (Left) Original graph, (Center and Right) two randomly generated spanning 

trees. 

learning, require computing marginals and the partition 
function. Computationally efficient inference is crucial for 
learning as the inference has to be done many times in the 
course of training. 

There are several cases when inference is tractable. They 
include tree structured graphs [4], graphs with low treewidth 
[5,6,7,8], and binary pairwise Markov Random Fields (MRFs) 
with submodular energy constraints [9]. The complexity arises 
due to the intractability of inference in general graphs for 
which it is known to be NP-hard [10, 11, 12]. Different 
approaches to approximate inference have been proposed. The 
pseudo-likelihood approach approximates the true likelihood 
objective with a factorization of the local conditional 
likelihoods [13, 14]. Piecewise pseudo-likelihood takes the 
idea of pseudo-likelihood further by decomposing a graphical 
model into pieces, each of which is trained separately and then 
combined into a model [15, 16]. The blocked contrastive 
divergence approach uses sampling of tree-structured blocks to 
approximate the gradient of the likelihood with the gradient of 
the composite likelihood [17]. 

A frequently used approach for approximate inference is 
loopy belief propagation (LBP), in which belief propagation is 
applied to the graph, even if it is not a tree [4]. However, LBP 
is not guaranteed to converge and when it converges the result 
is not guaranteed to be a unique fixed point. One of the well-
known approaches to approximate the inference is tree-
reweighted message passing (TRW) that decomposes the MAP 
estimation problem over a loopy graph into tractable 
subproblems over acyclic subgraphs and then employs 
message passing over trees to combine solutions [18]. The 
original TRW approach was modified into sequential tree-
reweighted message passing scheme (TRW-S) that addressed 
the lack of convergence in the TRW and tightened the lower 
bound on the energy function [19]. 

Another approach to approximate the intractable loopy 
graph model is via a mixture of spanning trees [20]. A set of 
randomly sampled spanning trees is generated (Fig. 2). These 
trees are learned separately to address the overall classification 
problem and inference is then performed on each individual 
tree. The learning is computationally efficient because the 
inference on trees is exact and efficient. Classification 
labels can be produced via voting strategy over MAP labels 
obtained on the sampled spanning trees. In this work, we 
empirically investigate the impact of memorizing the structure 
of the sampled spanning trees used during learning. We 
compare two approaches to create an ensemble of spanning 
trees, whose parameters are optimized during learning: (1) 

memorizing the structure of the sampled spanning trees used 
during learning and, (2) not storing the structure of the sampled 
spanning trees after learning. In the first approach, during test 
phase we create an ensemble by reusing spanning trees with 
the memorized structures and corresponding optimized sets of 
tree parameters. In the second approach, we randomly 
regenerate spanning trees anew and use the same set of 
optimized parameters for all trees. Experiments were done on 
two image datasets consisting of synthetic and real-world 
images. 

II. CRF TREE-STRUCTURED APPROXIMATION 

A. Inference in tree-structured graphs 

Inference is a fundamental problem that arises during 
both the test and training phases. During training, 
computing the gradient requires inference for the 
computation of node and edge marginals, which can be 
done efficiently for tree structured graphs or graphs with 
small treewidth. Inference in tree-structured graphs can be 
implemented efficiently using belief propagation that is an 
iterative message passing algorithm for computing 
approximate marginal distributions of each variable in a 
graphical model [4]. The algorithm is based on the idea of 
message passing along the edges of the graph, where the 
message indicates how much each node should update its 
belief based on the neighboring node’s current 
information. In tree-structured graphs the message passing 
schedule can be considered as a two-pass schedule, with 
forward message propagation followed by backward 
propagation. The algorithm begins by defining one of the 
variables (nodes) as the root. In the forward sweep the 
algorithm sends messages from leaves towards the root. In 
the backward sweep the messages are propagated in the 
opposite direction, from the root through tree edges to all 
leaves. After the completion of the backward sweep, the 
full set of messages over every edge in both directions is 
estimated. This allows one to compute all the node and 
edge (joint) marginals. The computational complexity of 
the algorithm is 𝑂(𝑁𝑚2), where 𝑁=|𝑉| is the number of 
node variables, and 𝑚 = max𝑖 𝑚𝑖. In loopy graphs, neither 
convergence nor correctness of this procedure is guaranteed as 
the message of one node can pass back to itself through the 
loops; thus approximate methods, such as LBP, can be used. 

The important question is how to choose trees to 
approximate the original graphical model. The number of 
spanning trees of the graph is exponential in the size of the 
graph. The exact number of spanning trees can be 
estimated using the matrix-tree theorem by evaluating the 



determinant of the combinatorial Laplacian of the graph. 
We take an approach that assumes a lack of prior 
information on more optimal graph partitioning, or that 
complex objects which have to be recognized do not show 
any specific patterns in spatial arrangements of their 
components, except possibly being closer to each other. It 
is similar to a very general scenario of context-driven 
recognition, when co-occurrence of individual components 
facilitates recognition of each component by the others. In 
the end, collective recognition of the components 
facilitates the recognition of the whole object they 
constitute. Therefore, we choose to randomly generate 
spanning trees. Each of trees captures some aspect of the 
original model. The use of randomly sampled trees allows 
us to compensate to some extent for weakness of each of 
the individual spanning trees. Spanning trees are generated 
uniformly at random from among all spanning trees of the 
original graph using the algorithm, introduced in [21], that 
simulates a loop-erased random walk. The complexity of 
this generation is 𝑂(𝜏̅), where 𝜏̅ is the mean hitting time of 
a graph, which can be much smaller than the cover time of 
a graph. In the case of memorizing the structure of 
spanning trees, we generate a predefined number of trees 
and then train every generated tree on the whole training 
dataset. Classification is done by majority voting over the 
pool of these stored trained trees. In the case of not storing 
the structure of spanning trees, we randomly generate a 
pool of spanning trees either anew for each data sample of 
the training and test datasets, or we generate the pool once 
for training and then randomly generate new pool before 
testing begins. 

B. Learning 

For the tree-structured model efficient exact parameter 
learning is possible. Parameters of every spanning tree are 
optimized by maximizing the log-likelihood L on the 
training data D. This optimization can be performed by 
gradient-based methods. Using the log-linear model of 
factors in equation (4) the conditional log-likelihood in 
equation (5) can be rewritten as 

𝐿 =
1

|𝐷|
∑ (log

1

Z(𝑿; 𝜽)
∏ exp{𝜽𝑐

𝑇𝑓𝑐(𝒀𝒄, 𝑿𝒄)}𝐶
𝑐=1 ) −(𝑿,𝒀)∈𝐷

𝜆 ∙ ‖𝜽‖2   

 

(6) 

   𝐿 =
1

|𝐷|
∑ ∑ 𝜽𝑐

𝑇𝑓𝑐(𝒀𝒄, 𝑿𝒄)𝐶
𝑐=1 −(𝑿,𝒀)∈𝐷

1

|𝐷|
∑ logZ(𝑿;  𝜽)(𝑿,𝒀)∈𝐷 − 𝜆 ∙ ‖𝜽‖2, 

 

(7) 

Differentiating the log-likelihood with respect to 𝜽 and 
using equation (2), the partial derivative of the log-
likelihood with respect to 𝜽 is expressed as 

𝜕𝐿

𝜕𝜃
=

1

|𝐷|
∑ 𝑓𝑐(𝒀𝒄, 𝑿𝒄) −

1

|𝐷|
∑

1

Z(𝑿; 𝜽)

𝜕Z(𝑿; 𝜽)

𝜕𝜃(𝑿,𝒀)∈𝐷 −(𝑿,𝒀)∈𝐷

𝜆 ∙ ‖𝜽‖, 

 

(8) 

The partial derivative of the second term with respect 
to the parameter 𝜽 is computed as 

1

|𝐷|
∑

1

Z(𝑿; 𝜽)(𝑿,𝒀)∈𝐷 ∑ (∏ exp{𝜽𝑐
𝑇𝑓𝑐(𝒀𝑐

′ , 𝑿𝒄)}𝐶
𝑐=1 ) ∙𝒀′∈Ω

∑ 𝑓𝑐(𝒀𝑐
′ , 𝑿𝒄)    𝐶

𝑐=1     

 

(9) 

=
1

|𝐷|
∑

1

Z(𝑿; 𝜽)(𝑿,𝒀)∈𝐷 ∑ 𝑃(𝒀′|𝑿) ∙ ∑ 𝑓𝑐(𝒀𝑐
′ , 𝑿𝒄)𝐶

𝑐=1𝒀′∈Ω , 

 

(10) 

The first term in (8) is the expected value of f under the 
empirical distribution and the partial derivative of the 
second term is the expectation under the model 
distribution. Thus, the derivative of the conditional log-
likelihood with respect to a parameter 𝜽 can be expressed 
as a difference between the expected and observed feature 
responses. The sums of the feature values f in (8) and (10) 
are also known as sufficient statistics.  

Computation of the gradient requires the marginal 
probabilities, 𝑃(𝑌′|𝑋), which can be efficiently computed 
in trees using the forward-backward algorithm discussed in 
the previous section. The model parameters are initialized 
using maximum likelihood estimation for the logistic 
regression model. Then, we use a limited memory quasi-
Newton method, such as L-BFGS [22], to optimize the 
parameters of the tree-structured CRF model.  

When we memorize the structure of the spanning trees, 
for every kept tree we optimize a corresponding set of 
parameters. When we do not store the structure of 
spanning trees, we optimize one set of parameters that is 
used by all the spanning trees in the pool.  

III. PERFORMANCE EVALUATION 

We evaluate spanning tree structured approximations 
for CRF on a number of synthetic and real-world image 
datasets and compare it with the results presented in 
[20,23,24,25], as well as with the results produced using a 
logistic regression classifier and the grid-structured CRF 
model with LBP inference. We use the same two datasets 
that were used in [23,24]. Regularization of CRF node and 
edge parameters is done with the corresponding values of 
the regularization parameters 𝜆𝑛 ,  𝜆𝑒. We search for 𝜆𝑛,  𝜆𝑒 
in a grid like fashion on pairwise combinations 𝜆𝑛,
𝜆𝑒which are formed using a set of allowable 𝜆 = {0.001, 
0.01, 0.1, 1, 10, 100}. We used one of the folds in the 
training dataset corresponding to the problem of binary 
image denoising that is presented in the next section. 
Then, the same values of 𝜆𝑛, 𝜆𝑒  were used in the second 
experiment on real-world images. We used 𝜆𝑛=0.001 and 
𝜆𝑒  = 100, though other combinations were comparable to 
the chosen one in terms of pixelwise classification error. In 
all our experiments we initialize the model parameters 
with zeroes and find starting estimates of the node 
parameters using a logistic regression model, which are 
then used in the follow-up training of the full model, e.g. 
in the grid-structured CRF model with LBP inference.  

A. Synthetic images: binary image denoising 

We used the binary image denoising dataset that is 
available in [23,24]. The dataset includes two subsets 
containing images corrupted with either unimodal or 
bimodal Gaussian noise. There are fifty 64×64 pixels noisy 
image  samples corresponding to one of the four  reference  



 

    

    

    

    

    

    
Fig. 3. Results of binary denoising task. From top: row 1: reference images, row 2: images corrupted with bimodal noise, row 3: logistic classifier 
results, row 4: results of the grid structured CRF model with loopy belief propagation inference, row 5: result using one spa nning tree; row 6: result 

using a majority voting on a set of 15 CRF spanning trees with randomly generated structures and the same set of optimized (learned) parameters . 

TABLE I.  PIXELWISE CLASSIFICATION ERROR (%) FOR BINARY DENOISING TASK. KH’06 STANDS FOR THE RESULTS PUBLISHED IN [23, 24]. 
COMPARISONS TO LOGISTIC CLASSIFIER AND GRID-STRUCTURED CRF MODEL WITH LOOPY BELIEF PROPAGATION INFERENCE (LBP) ARE ALSO SHOWN. 
FOR LBP INFERENCE CASE WE AVERAGE OVER FIVE DIFFERENT RUNS EACH ON 160 TEST SAMPLES. MEAN ± STANDARD DEVIATION IS SHOWN FOR OUR 

RESULTS AND POB’09 RESULTS THAT ARE AVERAGED OVER FIVE RUNS TOO 

 
Unimodal Bimodal 

Logistic regression based classifier  14.72±0.02 23.10±0.04 

Markov Random Field (KH’06) 2.35 7.00 

Discriminative Random Fields (KH’06) 2.30 6.21 

LBP (MPM estimates) 2.65±0.11 6.04±0.09 

Majority voting on a set of spanning trees (MPM estimates, a set of 15 
spanning trees), tree structure is memorized 

3.37±0.01 5.81±0.06 

Majority voting on a set of spanning trees (MPM estimates, a set of 15 
spanning trees), tree structure is not memorized 

3.38±0.04 5.80±0.02 

 



images. Therefore, each data subset contains 200 images. 
The unary and pairwise features are defined similar to [23, 

24]. We used 𝑓𝑖
𝑛𝑜𝑑𝑒 = [1, 𝐼𝑖]  and 𝑓𝑖𝑗

𝑒𝑑𝑔𝑒
= [1,   |𝐼𝑖 − 𝐼𝑗|] , 

where 𝐼𝑖  is the pixel “i” intensity. We used slightly 
modified 5-fold cross-validation, in which we train the 
model on one fold and test the model on the remaining k-1 
folds. Each fold has 40 images consisting of 10 images 
corresponding to each reference image. Therefore, we 
report average performance over five runs each on 160 test  
images. The results for the task of denoising images 
corrupted with bimodal noise are shown in Figure 3.  

Similar statistics was obtained for the task of denoising 
images corrupted with unimodal Gaussian noise. 
Comparison of rows 4 and 6 in the Figure 3, as well as the 
summary in Table 1, show that the tree-structured 
approximation for CRF produces comparable level of 
performance with the grid-structured CRF model that uses 
LBP inference. Results produced when the structure of trees 
is memorized and when it is not, are of comparable quality. 

B. Real-world images: structure detection 

We used the dataset that was presented in [23, 24]. The 
training and testing datasets contain 108 and 129 images 
respectively, each of size 256×384 pixels, from the Corel 
image database. Each image was divided into non-
overlapping patches of 16×16 pixels. The goal was to label 
each patch as structured (man-made) or non-structured 
(natural background). There are 30710 “non-structured” 
pixel patches and 10762 “structured” pixel patches in the 
training dataset. The testing dataset contains 43164 “non-
structured” patches and 6372 “structured” patches. 

Each pixel patch was originally characterized with a 
14-dimensional feature vector computed using orientation 
and gradient magnitude based features similar to as 
described in [24]. The feature vector contains a 
combination of single-scale and multi-scale features. The 
number of scales was chosen to be 3. Multi-scale features 
of the pixel patch were extracted from orientation 
histograms of blocks sizes 16×16, 32×32, and 64×64 
centered on the lowest scale block that covers the 16×16 
pixel patch. For each image patch, the gradients at pixels 
contained in the blocks are used to compute histograms of 
gradient orientations. Each count in the histograms is 

weighted by the gradient magnitude at that pixel. The 
histograms were smoothed using kernel smoothing. From 
the smoothed histogram the first and third heaved central 
shift moments were extracted. Two additional features 
related to each scale were computed as well. The first is 
|cos(𝑝1)| and the second is given by |sin(𝑝1 − 𝑝2)|, where 
𝑝1  is the location of the highest peak of the orientation 
histogram, and 𝑝2  is the location of the second highest 
peak of the histogram. This feature favors the presence of 
near right-angle junctions, which are more likely to be 
associated with man-made structures. 60 bins were used to 
encompass the angular range of [-π, π]. Two interscale 
features were computed to facilitate detection of 
continuing line or near right angle present at multiple 
scales. These features were computed between different 

scales as |cos 2(𝑝1
𝑖 − 𝑝1

𝑗
)|, where 𝑝1

𝑖  is the location of the 

highest peak at scale i. The differences between values 
corresponding to the first and second and the first and 
third scales were used. Then, this 14-dimensional feature 
vector is expanded with quadratic mapping into a 119-
dimensional feature vector corresponding to each pixel 
patch. Pairwise feature vectors were obtained by 
concatenating the expanded patch feature vectors.  

We compared the performance of the two 
approximation approaches based on an ensemble of 
spanning trees with the results presented in [23, 24, 25] 
and the grid-structured CRF model with LBP inference. 
We note that the false positive rate reported in [23, 24] 
does not count as false positive (FP) a misclassification 
that is adjacent to a block with ground truth labeled 
“structured.” In the results shown in Table 2 and in Figure 
4, we follow the convention in [23, 24]. It is worth 
mentioning that the majority of false negatives correspond 
to small scale objects or flat surfaces (e.g., smooth roofs 
and walls), which is a matter of designing better features, 
better labeling and partitioning of the training images. The 
precision obtained with the grid-structured CRF model and 
LBP inference is 74.64% over the test dataset. The 
approximation based on majority voting on a set of 15 
spanning trees without memorizing tree structure has a 
precision of 83.24%, while the approximation that 
memorizes tree structure has a precision of 79.95%. The 
approximation based on a cascade of spanning trees gives 
a precision of 79.27% [25]. Thus the last three 

TABLE II.  DETECTION RATES (DR) AND FALSE POSITIVE RATES (FP) FOR STRUCTURE DETECTION PROBLEM OVER THE TEST SET CONTAINING 129 

IMAGES.  KH’06 STANDS FOR THE RESULTS PUBLISHED IN [23,24,25]. COMPARISONS OF MAJORITY VOTING ON A SET OF 15 SPANNING TREES AND GRID-
STRUCTURED CRF MODEL WITH LOOPY BELIEF PROPAGATION INFERENCE (LBP) ARE ALSO SHOWN 

 
DR (%) FP (per image) 

Markov Random Field (KH’06) 58.35 2.44 

Discriminative Random Fields (KH’06)  72.54 1.76 

LBP (MPM estimates) 85.30 14.32 

Majority voting on a set of 15 spanning trees (MPM estimates), 
tree structure is memorized 

88.01 10.90 

Majority voting on a set of 15 spanning trees (MPM estimates), 
tree structure is not memorized 

90.52 9 

MPM estimates using a hierarchical cascade of spanning trees 
(SK’14), tree structure is not memorized 

91.75 11.85 



  

  

  

  

  

Fig. 4. Example results for structure detection task using a majority voting on a set of 15 CRF spanning trees with randomly generated structures. 

Spanning tree structures used during learning are not memorized; the same optimized set of parameters is used for all randomly generated spanning 
trees. True positives are highlighted in green, false positives are in red, false negatives are in yellow.   

  



approximations based on spanning trees have shown better 
detection rate and precision than the ones produced by the 
original model with LBP inference. 

The performance of the investigated approximations 
that do not memorize tree structure is slightly better than 
that of the model with memorized structure of the 
spanning trees. We hypothesize that the robustness towards 
edge removal in the original loopy model in the process of 
tree construction and towards the possibility of presence of 
the same edge in multiple trees is the result of combination 
of two factors. The first is that different spanning trees in 
ensemble provide alternative pathways between node 
clusters of the original graph model. This compensates for 
removed edges in the original model. The second is the use 
of the same set of tree parameters, 𝜃∗, that is optimized for 
a variety of randomly generated spanning trees. This leads 
to a parameter template that is more robust towards 
missing or duplicated edges. 

IV. DISCUSSION 

We have investigated an approximation approach to 
learning and inference in CRF using a decomposition of 
the original grid-structured graph based on a set of 
randomly sampled spanning trees. The results on two 
synthetic and real-world imagery datasets have 
demonstrated better performance of the investigated 
approximation approach than the performance of the 
original grid-structured model with LBP probabilistic 
inference. The interesting finding is that the approach that 
does not memorize the structure of spanning trees has 
shown slightly better performance than the model with the 
memorized tree structures. This is similar to the finding in 
[25] that investigated an approximation based on a cascade 
of spanning trees. This finding will be the subject of 
further investigation as well as approximations based on the 
trees with thicker treewidth (e.g., [5, 6, 7, 8]), which are still 
computationally tractable.  
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